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Abstract Pacific salmonids, cold-water fishes native

to the northern hemisphere, span a massive geographic

range (* 33� latitude) and are exposed to a wide

variety of environmental conditions regionally and

temporally. California is home to the greatest concen-

tration of at-risk anadromous salmonids and warming

river temperatures pose both current and future threats

to numerous populations. Thermal standards for

management of California populations are currently

based on guidelines for multiple salmonid species and

from populations across the Pacific Coast. However, a

growing body of literature suggests that salmonid

populations exhibit population-specific thermal

requirements. Furthermore, in California, salmonid

populations regularly encounter temperatures that

exceed current thermal standards based upon perfor-

mance of outside populations. This review focuses on

Chinook salmon (Oncorhynchus tshawytscha), pro-

viding evidence for interpopulation variation in ther-

mal performance across life stages, and explores the

drivers of variation. To describe the formation of

interpopulation variation, we define fundamental and

ecological thermal physiologies. Fundamental

thermal physiology is the composite of intrinsic

physiological traits and abiotic factors that define a

species’ thermal window. Ecological and environ-

mental interactions constrain this fundamental thermal

physiology, yielding an ecological thermal physiol-

ogy. Thermal physiology, viewed through this lens,

provides researchers and managers avenues for

salmonid research and conservation at the population

scale. A more nuanced approach to west-coast

salmonid conservation will be required to protect the

most at-risk and vulnerable populations. Successful

salmonid management must incorporate population-

specific traits and present and future watershed

conditions.

Keywords Thermal biology � Local adaptation �
Climate change � Conservation � Chinook salmon

Introduction

Pacific salmonids (Oncorhynchus spp.) are native to

northern latitudes and are broadly considered cold-

water species. Increasing water temperatures are

among a host of factors that have led to declining

regional populations (Crossin et al. 2008; Moyle et al.

2017). Salmonids are strongly influenced by temper-

ature via intrinsic physiology (e.g., metabolism) and

extrinsic ecological interactions (e.g., predation,
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competition). Predicted increases in global tempera-

ture will undoubtedly alter these dynamics, leading to

challenges in species management and conservation

under a rapidly changing environment. Incorporating

physiological thermal performance criteria into spe-

cies management, especially in aquatic ecosystems, is

widespread (U.S. Fish and Wildlife Service 1990,

1995, 2002a, b, c, 2015; U.S. Environmental Protec-

tion Agency 2003; National Marine Fisheries Service

2014). For instance, in the Pacific Northwest, the EPA

Region 10 Guidance for Pacific Northwest State and

Tribal Temperature Water Quality Standards (Region

10 Guidance) specifies thermal thresholds for different

salmonid life-stages (egg incubation, juveniles, return-

ing adults, etc.). Current management guidelines were

developed by synthesizing data from multiple, often

geographically disparate populations and species; by

design this one-size-fits-all framework does not

account for differences in thermal physiology between

populations (U.S. Environmental Protection Agency

2003; U.S. Fish and Wildlife Service 2015; Gayeski

et al. 2018). Recent evidence suggests that individual

populations often differ in thermal physiology due to

local and regional environmental variation (Fangue

et al. 2006; Eliason et al. 2011; Chen et al. 2013; Stitt

et al. 2014). This is particularly relevant for manage-

ment of southern-edge populations, (e.g., California

and Oregon populations) which are confronting the

limits of their thermal capacity.

The greatest concentration of at-risk Pacific

salmonid populations is in California. Moyle et al.

(2017) identified 21 anadromous salmonid evolution-

ary significant units (ESU) in California, of which 14

are federally listed, and 11 are expected to be extinct

within 50 years if present trends continue. Interactions

between climate (e.g., increasing water temperature,

drought severity, reduced snowpack) and anthro-

pogenic effects (e.g., invasive species, pollutants,

fisheries, hatcheries) have been identified as key

factors driving many of these populations to the brink

of extinction (Moyle et al. 2013, 2017; Katz et al.

2013). Air temperatures in California are expected to

increase between 1.7 and 5.8 �C over the next century,

causing increases in stream temperatures of

1.4–4.6 �C (Cayan et al. 2008; Null et al. 2013). River

warming will be exacerbated during periods of low

flow (Chang and Bonnette 2016), which are antici-

pated to increase in frequency and duration due to

climate change impacts on snowmelt (Hamlet et al.

2005) and droughts (Diffenbaugh et al. 2015). Across

California’s diverse landscape, these threats manifest

themselves in different combinations and intensities

posing a challenge to salmonid conservation and

resource management. California is the southernmost

range extent for six anadromous salmonid species

including endangered endemic populations of Chi-

nook salmon (O. tshawytscha) and steelhead trout (O.

mykiss). Additionally, these populations are facing

increasing urbanization and habitat modification lead-

ing to population declines. Broadly, conserving pop-

ulations on the receding range edge is challenged by

unusual and diverse phenotypes, not necessarily

represented by the species as a whole (Hampe and

Petit 2005). Ultimately, population-specific thermal

guidelines may offer populations in California, and

more broadly those across the Pacific Northwest,

resiliency in a rapidly shifting climate.

Preserving salmonid populations has long been a

stated goal of state and federal fisheries management

agencies. However, existing temperature standards

may be poorly suited for conserving salmonids in an

era of climate change. The current, Region 10

Guidance provides thermal management criteria

derived from thermal performance studies of more

northern salmonid populations (U.S. Environmental

Protection Agency 2003). However, ample evidence

exists indicating that thermal performance among

salmonid populations varies both interspecifically

(Cech and Myrick 1999; Myrick and Cech 2001;

Richter and Kolmes 2005; Verhille et al. 2016) and

intraspecifically (Sauter et al. 2001; Stitt et al. 2014).

For example, physiological performance traits of adult

(Eliason et al. 2011) and alevin (Chen et al. 2013)

sockeye salmon (O. nerka) from the Fraser River in

British Columbia, demonstrated interpopulation vari-

ation among locally-relevant traits (e.g., migration

difficulty, water temperature), supporting hypotheses

of local adaptation to natal watersheds and migratory

routes. Across their geographic range, anadromous

Pacific salmonids may encounter annual temperature

extremes ranging from 0 to18 �C in large, boreal rivers

(Yang et al. 2014) and 7–25 �C in the Sacramento

River (CA) watershed (Lowney 2000; Wagner et al.

2011) with variability occurring both temporally and

spatially across habitats. Understanding the drivers of

local thermal adaptation among salmonids and devel-

oping a mechanistic framework to predict population
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response to warming temperatures offers a solution to

conserving salmonids in response to climate change.

We summarize the literature relevant to describing

intraspecific variation of salmonid thermal perfor-

mance and discuss these data in the context of design

and application of temperature management criteria.

More specifically, we synthesize research focused on

the thermal performance, and variation therein, of

Chinook salmon. Chinook salmon were chosen

because they are relatively well-studied, wide-rang-

ing, and include several at-risk populations currently

confronting thermal stress, specifically in California

(Yoshiyama et al. 2001; Moyle et al. 2017). This

review then expands to explore the sources and drivers

of intraspecific variation within Pacific salmonids.

These drivers are organized by their influence on

fundamental or ecological thermal physiology. We

define fundamental thermal physiology as the collec-

tion of intrinsic physiological traits that delineate a

species’ thermal capacity (Fry 1947; Pörtner and

Farrell 2008). A species’ ecological thermal physiol-

ogy is defined by the circumscription of the funda-

mental thermal physiology by environmental forces

(Brett 1971) (Fig. 1). We argue that understanding the

diversity of fundamental and ecological thermal

physiologies and how they produce population-speci-

fic thermal performance is essential to developing

management strategies for protecting Chinook salmon

in California and salmonids more broadly. Finally, we

also propose conservation strategies and research

priorities that are fundamental to the conservation of

salmonids in California and throughout the Pacific

Northwest.

Chinook Salmon: life stages, development,

and thermal limits

Myrick and Cech (2001, 2004) reviewed the literature

for California Central Valley anadromous salmonids

and presented knowledge gaps in our understanding of

how temperature influences these species, seasonal

runs, and populations. Subsequent reviews reported

differences in thermal capacity among anadromous

salmonid species, but did not highlight the capacity for

intraspecific variation (e.g., Carter 2005; Richter and

Kolmes 2005), nor the potential mechanisms con-

tributing to such variation. Research since Myrick and

Cech (2001, 2004) has exposed intraspecific variation

Fig. 1 Conceptual diagram of fundamental and ecological

thermal physiology. A fish’s intrinsic physiological traits dictate

the size and shape of the fundamental thermal capacity (blue).

Ecological factors such as competition for food resources or

predation by warm water predators constrain the fundamental

thermal physiology to smaller ecological thermal physiology

(green). Sub-figures a and b are hypothetical fundamental

thermal physiologies for cold-adapted or warm-adapted popu-

lations respectively. Star icons indicate the optimal temperature

for ecological fitness of a given fundamental or ecological

physiology. Tracking of the thermal optimum reveals how

populations with the same fundamental thermal physiology

(e.g., b, d, f, h) can have variable ecological thermal physiology

dependent on ecological factors. Likewise, populations encoun-

tering the same ecological factors (e.g., c vs. d or g vs. h) will

elicit different ecological thermal physiology, dependent upon

their underlying fundamental thermal physiology
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in thermal performance within several salmonid

species (e.g., Eliason et al. 2011; Chen et al. 2013;

Stitt et al. 2014). Below, we review the literature on

Chinook salmon regarding intraspecific variation in

thermal performance across life stages. Chinook

salmon exhibit several conserved life-history phe-

nologies described as seasonal runs within which may

exist one (e.g., winter-run), a few (e.g., spring-run), or

many (e.g., fall-run) distinct populations. Literature on

Chinook salmon is vast but controlled comparisons

between populations are limited. Therefore, to facil-

itate comparisons across studies, this review focuses

on available physiological trait datasets (e.g., growth

rate, acute thermal tolerance) that are commonly

quantified across populations using similar experi-

mental conditions (e.g., ad libitum rations,

stable temperatures).

Embryos and alevins

Chinook salmon embryos are laid in gravel redds

where eggs incubate until hatching as alevin or yolk-

sac fry. Myrick and Cech (2001) reviewed multiple

studies and determined that Central Valley Chinook

salmon embryos successfully developed at tempera-

tures ranging from 1.7 to 16.7 �C, with mortality

increasing dramatically toward thermal extremes. The

upper thermal limits for prolonged embryo rearing of

Central Valley fall-run Chinook salmon embryos are

between 13.3 and13.9 �C for California winter-run

Chinook salmon (USFWS 1999; Myrick and Cech

2001). Heming (1982) found that a fall-run Chinook

salmon population from British Columbia had declin-

ing egg survivorship when reared at 12.0 �C. How-
ever, Jensen and Groot (1991) found that temperatures

below 14.0 �C did not increase mortality of embryos

from the Big QualicumRiver (Canada). Upper thermal

tolerance in Chinook salmon embryos among popu-

lations is relatively conserved, ranging from 12 to

14 �C. However, populations do appear to vary in their
ontological response to temperature. Steel et al. (2012)

reared Yakima River (WA) Chinook salmon eggs

from eight families under eight variable thermal

regimes designed to capture different absolute tem-

peratures and amounts of thermal variability. They

found that both thermal regime and family were

significant factors in the ontogeny and phenology of

Chinook salmon. Their work highlights two valuable

results. First, that the commonly used management

metric of ‘degree days’ to predict salmon development

is insufficient under a changing landscape, and second,

that variation in thermal physiological response was

influenced by genetic traits.

Geist et al. (2006) found that a population of Snake

River Chinook salmon alevins from Washington

survived rearing temperatures between 13.0 and

16.5 �C equally well, with survival declining precip-

itously at 17.0 �C. The authors suggest that this

impressive tolerance may represent local adaption to

historically warm river temperatures. Research by

Garling and Masterson (1985) on Chinook salmon

alevins from the Great Lakes (USA) showed reduced

survival (74% vs. 98%) when alevins were reared at

warmer temperatures (15.1 �C vs 11.4 �C). Fuhrman

et al. (2018) compared emergence phenology and

development among four hatchery populations of

spring-run Chinook salmon across four thermal

regimes. They observed population-specific signifi-

cant variability in emergence traits (e.g., emergence

date, size-at-emergence, etc.) likely reflecting local

adaptations with important fitness consequences.

Overall, research on embryonic and larval stages

indicates that critical temperature thresholds are

somewhat conserved across populations. However,

interpopulation variation in ontogeny and phenology

does appear to be temperature-dependent, reflecting

local adaptation. These sub-lethal effects may have

important consequences for how a population’s fun-

damental thermal physiology interacts with local

environmental factors.

Juveniles

Once alevin absorb their yolk-sac and begin exoge-

nous feeding they are considered juveniles. To com-

pare populations of juvenile Chinook salmon we

selected growth as a holistic physiological metric

which integrates many physiological processes and

stressors (Arendt 1997). Growth rate is temperature-

dependent and widely assessed using agreed method-

ology, furthermore it is relevant to assessing ecolog-

ical fitness and wildlife management. There have been

several laboratory-based growth studies using juve-

niles from California Central Valley fall-run Chinook

salmon populations. Optimal growth for juveniles

from the Nimbus Hatchery (CA), fed at satiation

rations under laboratory conditions, occurred at 19 �C
(Cech and Myrick 1999) and growth was optimized
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between 17 and 20 �C for juveniles from the Coleman

National Fish Hatchery (CA) (Marine and Cech 2004).

This range of temperatures is broadly consistent with

temperatures reported by Brett et al. (1982), who

found that Chinook salmon juveniles from the Big

Qualicum River (BC) hatchery and wild juveniles

from the Nechako River (BC) grew optimally at 20.5

and 18.9 �C, respectively. More recently, Zillig et al.

(2020) examined the thermal physiology of several

populations of laboratory acclimated Chinook salmon

from throughout the Pacific Northwest, revealing

different responses to acclimation temperatures

(11 �C, 16 �C or 20 �C) among populations. Growth

rates among all populations were similar

(* 0.15 g/day) when fish were reared at 11 �C.
Conversely, when different populations were reared

at 20 �C, growth rates varied broadly between popu-

lations (e.g., Coleman hatchery fall-run population

(CA), * 0.3 g/day; Trask hatchery fall-run popula-

tion, OR; * 0.15 g/day). However, the capacity for

laboratory conditions to influence thermal physiolog-

ical performance cannot be ignored. Rich (1987)

reared Nimbus Hatchery (CA) fall-run Chinook

salmon using diverted river water and found that

growth rates declined when fish were reared at

temperatures exceeding 15.3 �C, a decrease of

3.7 �C as reported by Cech and Myrick (1999). This

apparent discrepancy in growth rate could be attrib-

uted to the effects of disease or to differences in water

chemistry between laboratory and field experiments

(Myrick and Cech 2001) and highlights the impor-

tance of accounting for ecological factors when

identifying management temperature targets. Opti-

mizing growth rate is a common target for manage-

ment and conservation and the studies summarized

above indicate that populations of Chinook from

across the West Coast may exhibit different temper-

ature-dependent growth relationships. Understanding

the drivers of these differences and managing for this

variation is important in protecting at-risk populations.

There is a general lack of research comparing

smoltification (i.e., the process of transitioning to

saltwater and the transition from juvenile to sub-adult)

physiology among Chinook salmon populations.

However, it is well documented that this process is

partially temperature sensitive (Folmar and Dickhoff

1980; Marine and Cech 2004). Sauter et al. (2001)

compared the thermal preference of two seasonal

Chinook salmon runs, spring- and fall-run, from

Washington and found a significant change in thermal

preference between runs during smoltification. Fall-

run smolts shifted their thermal preference (from 17.7

to 11.2 �C) as they achieved maximal saltwater

tolerance. Conversely, spring-run Chinook salmon

smolts preferred 16.6 �C, with no observed change in

thermal preference associated with smoltification. The

authors interpreted differences between spring- and

fall-run Chinook salmon to reflect differences in

naturally occurring environmental conditions experi-

enced by Chinook salmon during smoltification.

Understanding how temperature influences smoltifi-

cation phenology, and whether different populations

or life-history strategies exhibit different temperature-

dependent smoltification phenology is an important

knowledge gap for future research.

Adults

Thermal physiology studies on adult Chinook salmon

are relatively limited, especially when comparing

populations. However, the temperature at which adult

salmon are impeded during migration can serve as a

coarse, comparable indicator of adult thermal perfor-

mance. After examining several Chinook salmon

populations from the Pacific Northwest, McCullough

(1999) concluded that adults sought thermal refuge

and migration ceased when water temperature reached

21 �C. Similarly, fall- and spring-run populations

from the Columbia River (WA) limited upstream

migration when temperatures reached 20 �C (Goniea

et al. 2006;Mann and Snow 2018). Keefer et al. (2018)

individually tagged, spring-, summer- and fall-run

Chinook salmon migrating through the Columbia and

Snake Rivers (WA). Migrating summer- and fall-run

salmon experienced temperatures near upper thermal

limits (20–22 �C) and would briefly (hours to days)

halt migration and use thermal refuges when available.

In California, Klamath River spring-run Chinook

salmon halted migration when temperatures surpassed

23 �C (Strange 2012) and Hallock et al. (1970)

reported that water temperature exceeding 19 �C
inhibited migration of Chinook salmon in the San

Joaquin River; however, in 2004, adults were observed

migrating upstream in the San Joaquin River at

temperatures exceeding 21 �C (Williams 2006).

Attributing migration phenology to interpopulation

variation is difficult because delays in migratory

behavior may reflect intrinsic thermal physiological
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traits, ocean and river environmental factors (Keefer

et al. 2008), state-dependent energetic limitations

(Plumb 2018), or a combination of these variables.

Therefore, understanding both the fundamental and

ecological thermal physiology of returning adult

Chinook salmon should help managers disentangle

the drivers of adult migration behavior.

Extensive research on adult sockeye salmon from

the Fraser River (BC), has documented thermal

intraspecific variation between populations relevant

to their migratory performance (Eliason et al. 2011;

Anttila et al. 2019). This work, discussed in greater

detail below, demonstrates local adaptation of nine

populations to population-specific migration routes

and spawning reaches. Given that Chinook salmon and

sockeye salmon are congeners, share similar life

history traits, and are sympatric throughout much of

their ranges, the ability of adult Chinook salmon to

show locally adapted thermal performance traits is not

surprising.

Summary

Considering the traits reviewed here, Chinook salmon

do exhibit interpopulation variation in thermal phys-

iology. This variation appears greatest during the

juvenile lifestage, with embryos and adults demon-

strating less plasticity. However, this may be a result

of study bias because juvenile salmon are easier to

study in both the lab and field than ocean dwelling

adults. Similarly, juveniles exhibit more measurable

and comparable traits than developing embryos. There

remain large knowledge gaps in the thermal physiol-

ogy of spring-run Chinook salmon and late fall-run

Chinook salmon.While current management guidance

criteria (Table 1) are broadly protective, they may not

protect unique at-risk populations (e.g., Sacramento

River Winter-run Chinook salmon [CA]), or account

for ecological differences (e.g., predators) between

populations. Management goals should seek popula-

tion specific thermal criteria, built upon an under-

standing of both a population’s fundamental thermal

physiology and its ecological thermal physiology.

Fundamental thermal physiology

An organism’s thermal physiology is dictated by the

interaction of environmental conditions, behavioral

responses, and intrinsic physiological traits

(Hochachka and Somero 2002). A large body of

research has developed over the past two decades

identifying sources of variation among fundamental

thermal traits of salmonids. Some of the causes of

variation are associated with genotypic differences

between populations or species (Nichols et al. 2016;

Chen et al. 2018b), while others are a result of

phenotypic plasticity applied across diverse and

dynamic environmental conditions (Narum et al.

2018). Below, we review the mechanisms by which

variation in fundamental thermal physiology among

populations is produced and maintained. We show that

management actions can be tailored by understanding

and incorporating these mechanisms to predict popu-

lation-specific thermal performance under future

conditions.

Acclimation and adaptation

The strategies by which organisms adjust to fluctua-

tions in their thermal environment fall into two broad

categories: (1) acclimation or physiological change

over days to weeks, and (2) adaptation or genetic

change across generations (Hochachka and Somero

1968; Hazel and Prosser 1974; Schulte et al. 2011;

Schulte 2015). Management frameworks, however,

often recommend static thermal thresholds to manage

river temperatures (U.S. Environmental Protection

Agency 2003). Ultimately, salmon thermal perfor-

mance is dynamic, enabling responses to environmen-

tal conditions on short time-scales via acclimation and

across generations via adaptation. The juxtaposition of

static management strategies against biological dyna-

mism may introduce and obscure pitfalls to effective

management and conservation. Therefore, the role of

acclimation and adaptation must be considered fun-

damental for the determination of thermal perfor-

mance and definition of management strategies.

It is well documented that salmonids acclimate to

local water temperatures. Acclimation to warmer

water temperature has been shown to increase acute

upper thermal tolerance in O. mykiss (Myrick and

Cech 2000b, 2005), sockeye salmon (Chen et al. 2013)

and Chinook salmon (Brett 1952; Zillig et al. 2020).

Furthermore, comparisons among Chinook salmon

from Northern California, the Oregon coast and

Columbia River Basin demonstrated differences in

acclimation capacity among populations (Zillig et al.
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2020). Across these populations, Zillig et al. (2020)

assessed acute thermal tolerance and growth rate of

fish reared at three temperatures (11 �C, 16 �C and

20 �C). Acute thermal tolerance increased with accli-

mation temperature among all populations, but to

differing extents, highlighting variation among popu-

lations in their acclimation capacity. Furthermore,

growth rates also changed with acclimation tempera-

ture. Fall-run populations from California exhibited

the greatest growth rate when reared at 20 �C, while
the sympatric and critically endangered Sacramento

River winter-run population grew at the slowest rate

when acclimated to the same temperature. Differing

capacity to acclimate to environmental change will

alter how salmonids cope with changes across the

thermal landscape. Populations with a limited thermal

tolerance and reduced acclimation capacity will likely

have the greatest difficulty adjusting to novel thermal

environments under climate change and are therefore

at the greatest risk of population decline and

extinction.

Adaptation (i.e., changes in the fundamental ther-

mal physiology) through mutation, genetic drift, and

natural selection tunes organismal traits to increase

biological fitness in response to environmental condi-

tions (Narum et al. 2013). While operating across

generations, adaptation can be important on manage-

ment timescales and a critical part of effective

conservation (Ashley et al. 2003). Muñoz et al.

(2015) demonstrated that physiological adaptation to

warmer temperatures was possible in Chinook salmon,

provided adequate genetic variation existed. Given

that the quantity of genetic diversity may vary between

populations, it may be assumed that adaptation

capacity varies intraspecifically as well. Therefore,

defining acclimation and adaptation capacity is impor-

tant to predicting population-specific responses to

environmental change.

Watershed variation

Interpopulation variation is generated through a com-

bination of environmental heterogeneity and salmonid

life-history strategies that reduce gene flow (Hilborn

et al. 2003). Pacific salmonids, and specifically

Chinook salmon, span a broad latitudinal range, across

which streams vary widely in environmental charac-

teristics and habitat types. Life history plasticity

enables salmon to adapt to most accessible river

systems, while spawning site fidelity and adult homing

behavior reduce regional gene-flow and permit genetic

drift between geographically proximate populations

(Taylor 1991; Dittman and Quinn 1995; Hilborn et al.

2003). Therefore, local watershed characteristics can

strongly influence the thermal physiology of

populations.

Eliason et al. (2011) demonstrated that multiple

physiological traits (e.g., heart mass, aerobic scope,

Table 1 EPA region 10

guidance criteria for

Salmon and Trout

Modified from U.S.

Environmental protection

agency (2003). (1)

‘‘7DADM’’ refers to the

7-day average of the daily

maximums; (2) ‘‘Salmon’’

refers to Chinook, coho,

sockeye, pink and chum

salmon; (3) ‘‘Trout’’ refers

to steelhead and coastal

cutthroat trout

Salmonid uses during the summer maximum conditions Criteria

Bull trout juvenile rearing 12 �C (55 �F)
7DADM

Salmon/trout ‘‘Core’’ juvenile rearing (salmon adult holding prior to

spawning, and adult and sub-adult bull trout foraging and migration may

also be included in this use category)

16 �C (61 �F)
7DADM

Salmon/trout migration plus non-core juvenile rearing 18 �C (64 �F)
7DADM

Salmon/trout migration 16 �C (61 �F)
7DADM

Salmonid uses Criteria

Bull trout spawning 9 �C (48 �F) 7DADM
Salmon/trout spawning, egg incubation, and fry emergence 13 �C (55 �F) 7DADM
Steelhead smoltification 14 �C (57 �F) 7DADM
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heart rate) correlated strongly with environmental

conditions of migratory routes and spawning locations

in Fraser River (BC) sockeye salmon. Researchers

captured returning adults, genotyped them to identify

different source populations, and collected data on a

suite of physiological traits. They found that popula-

tions that migrated further and traversed challenging

river features exhibited increased heart mass. Addi-

tionally, individuals belonging to populations native to

warmer habitats exhibited improved aerobic scope and

cardiac performance at warm temperatures when

compared with populations associated with histori-

cally cooler thermal regimes. In an extension of this

work, Chen et al. (2013) found that Fraser River

sockeye salmon embryos and alevins exhibited pop-

ulation variation and local adaptation in upper thermal

tolerance. Within the Central Valley of California,

Tuolumne River steelhead trout juveniles exhibited

‘warm-adapted‘ phenotypes (Verhille et al. 2016) and

Mokelumne River Chinook salmon juveniles revealed

unusual temperature-independent metabolic perfor-

mance (Poletto et al. 2017). The authors of both

studies suggest that these results are evidence of local

adaptation to elevated temperature regimes at the

southern range boundary. Evidence of salmonid

adaptation to local environmental conditions has also

been observed in brook trout (Stitt et al. 2014), red

band trout (Chen et al. 2018a, b), sockeye salmon

(Anttila et al. 2019) and rainbow trout (Chen et al.

2015).

The capacity for anadromous salmonids to adapt to

local watershed conditions is fundamental to advocat-

ing for population-specific management (Gayeski

et al. 2018). Watersheds exhibit variation across

numerous environmental gradients that influence the

experienced temperatures of salmonids. For instance,

Lisi et al. (2013) demonstrated that environmental

characteristics such as watershed steepness, size, and

the presence of lakes, accounted for variability in

spawn timing of Alaska sockeye salmon, primarily

through moderation of river temperature. Others have

shown that water source (Nichols et al. 2014),

discharge volume (Eliason et al. 2011; Anttila et al.

2019), riparian habitat (Moore et al. 2005), dissolved

nutrients (Selbie et al. 2009; Ranalli and Macalady

2010), and turbidity (Thomas 1975) can co-vary with

temperature and differentially between and within

watersheds. Micheletti et al. (2018) explored relation-

ships between environmental variables of migration

routes and adaptive genetic variation among Columbia

River steelhead. They found migration distance,

migration slope, water temperature and precipitation

correlated with changes in allelic frequencies among

populations, further indicating that populations will

genetically respond to local environmental conditions.

Similarly, Spence and Dick (2014) modeled the role of

photoperiod, temperature, flow and lunar phase in

predicting coho salmon (O. kisutch) smolt out-migra-

tion across four geographically distant populations.

Their results indicated that different combinations of

environmental variables are capable of predicting the

outmigration of different coho salmon populations.

Environmental factors, even regional or watershed-

specific, represent useful predictors in determining the

fundamental thermal physiology of local salmonid

populations. Metrics such as water temperature, flow

regime, and migration distance are easily quantifiable

and should be incorporated into conservation man-

agement actions (Fig. 2). Defining these population-

specific watershed characteristics is useful when

interpreting potential differences in fundamental

thermal physiology (Fig. 1) between populations.

Ecological thermal physiology

Variation in fundamental physiology is a result of

acclimation and adaptation applied to spatially and

temporally heterogeneous environments, leading to

differences in thermal physiology between popula-

tions. A population’s fundamental thermal physiology

is then modified by secondary interactions to produce

an ecological thermal physiology which further con-

strains, and potentially diversifies, a population’s

thermal performance (Fig. 1). Here, we review some

of the ecological factors that influence ecological

thermal physiology.

Bioenergetics: growth, metabolism

and asynchrony

Environmental temperature bounds the growth and

survival of ectothermic organisms like most fishes, but

some species have shown a capacity to compensate for

increases in water temperature when food resources

are abundant. Bioenergetic theory stipulates that

ectotherm growth is a function of energy consumed

versus energy expended or lost (Railsback and Rose
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1999). Energy loss is generally dictated by metabolic

activity which increases positively with temperature.

As temperature increases, so do metabolic outputs

such as egestion, excretion, and costs associated with

digestion (Railsback and Rose 1999). Under such

circumstances in the wild, salmonids must either seek

out thermal refuges to reduce energy expenditure or

compensate with increased food consumption

(Lusardi et al. 2020). Otherwise, an energy deficit

will occur, leading to reduced growth rates with

potential consequences for fitness (see Beakes et al.

2010).

Most stream ecosystems are naturally oligotrophic

(Allan and Castillo 2007), suggesting that behavioral

thermoregulation and movement to thermal refuges is

an effective strategy to deal with rising stream

temperature (see Welsh et al. 2001). However, in

productive ecosystems (e.g., spring-fed rivers, tailwa-

ters below dams, floodplains, coastal lagoons) salmo-

nids may be able to compensate for increases in stream

temperature with increases in food consumption. The

phenomenon has been shown to occur in numerous

laboratory studies where salmonids are fed to satiation

and exposed to warming temperatures. For instance,

Foott et al. (2014) found that California juvenile coho

salmon reared at 16.3 �C and 21.3 �C (mean temper-

atures) exhibited similar growth rates when fed to

satiation. Empirical evidence for growth compensa-

tion in natural ecosystems has been less frequently

observed. However, Bisson et al. (1988) found

exceptionally high rates of juvenile coho salmon

production in aWashington stream exhibiting daytime

temperatures up to 29.5 �C and speculated that high

food abundance was a causative mechanism support-

ing observed high rates of production. In a field

experiment, Lusardi et al. (2020) reared juvenile coho

salmon across a longitudinal gradient of temperature

and food availability in a California spring-fed stream.

They found food to be the proximate factor affecting

juvenile coho salmon growth. Specifically, they found

that juvenile coho salmon growth rates peaked at a

maximum weekly maximum temperature of 21.1 �C
and were sixfold greater than fish reared at a maximum

weekly maximum temperature of 16 �C.
Modeling work has also supported the bioenergetic

relationship between temperature and food availabil-

ity in salmonids. Railsback and Rose (1999) found that

food consumption was the primary determinant of O.

mykiss growth during summer (as opposed to temper-

ature) andWeber et al. (2014) used reach-specific food

web data and bioenergetic models to accurately

predict O. mykiss growth rates in several streams in

the John Day River basin (OR). Work by McCarthy

et al. (2009) on wild populations of steelhead in

Trinity River tributaries found that high water tem-

peratures and reduced feeding rate influenced growth,

sometimes causing weight loss. Their models indi-

cated that reduced growth may occur at temperatures

as low as 15 �C and that increased food availability or

Tier One: Assess Watershed Traits

Water Quality
Temperature

Dissolved Oxygen
Habitat Availability

Cold-water Refugia
Spawning/Rearing Habitat

Migratory Hurdles

Salmonid Popula�on 
Diversity

Species Diversity
Number of Evolu�onary 

Significant Units
Life History Diversity

Iden�fy Unique or At-
Risk Popula�ons

Tier Two: Popula�on Traits

Fundamental 
Thermal Physiology
• Acute and Chronic

Thermal Limits
• Laboratory Growth Rates
• Temperature Dependent

Metabolism
• Gene�c Diversity
• Smol�fica�on Physiology

Ecological Thermal 
Physiology

• Field Growth Rates
• Diet Composi�on
• Prey Abundance and

Assemblage
• Predator/Compe�tor

Assemblage
• Pathogens and eco-

toxins

Popula�on Specific Temperature 
Management Criteria

Determine popula�on-specific 
theramal physiologies

Fig. 2 Determining population specific temperature criteria.

First tier of experiments to assess and triage at-risk populations.

Once threatened populations are prioritized, research focuses on

quantifying population thermal performance traits and environ-

mental risk-factors (e.g., low food abundance, lack of thermal

refugia). Population-specific temperature criteria are produced

that reflect the fundamental and ecological thermal physiology

of the selected population and specific management goals (e.g.,

recruitment, growth, smoltification)
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quality would expand the window of viable temper-

atures. Their conclusions were extrapolated to indicate

that under future warming conditions steelhead pop-

ulations in food-limited systems will decline. Dodrill

et al. (2016) modeled a similar response in rainbow

trout, concluding that warmer temperatures resulted in

reduced growth, unless accompanied by increases in

prey availability and prey size. These studies suggest

that river productivity, and subsequent prey availabil-

ity, will strongly influence a population’s ability to

survive under warming water temperatures. Food

availability and productivity vary both across the

landscape and through time; quantifying these envi-

ronmental characteristics offers powerful predictors

for understanding how the fundamental thermal

physiology of salmonid populations may be energet-

ically constrained into a population specific ecological

thermal physiology (Fig. 1).

Annual changes in water temperature, habitat, and

flow regime also alter the phenology, abundance and

community composition of aquatic macroinvertebrate

communities (Boulton et al. 1992; Bonada et al. 2007;

Lusardi et al. 2016, 2018; Peterson et al. 2017) and

phenological shifts in food availability have been

shown to have population-level effects on predator

species such as salmonids (Møller et al. 2008;

Thackery et al. 2010). In extreme cases, termed

‘phenological mismatch’, shifts in the timing of

species interactions can lead to population declines

(Møller et al. 2008). Phenological mismatch is of

greatest concern for species which are specialist

predators or rely upon historically reliable but

ephemeral food resources (Visser et al. 1998; Green

2010; Kudo and Ida 2013). Recent work by Campbell

et al. (2019) explored temperature-dependent pheno-

logical traits among different populations of coho

salmon from several southern Alaska rivers exhibiting

diverse thermal profiles. All populations were phys-

iologically tuned to local thermal conditions and

exhibited synchrony in embryo hatching and devel-

opment despite differences in temperature between

rivers. Synchrony across such varied and population-

specific thermal landscapes may unveil compensatory

local adaptation to match resource timing (Campbell

et al. 2019), but disturbance of historical temperature

profiles may disrupt such synchrony. In summary,

bioenergetic research highlights that even if funda-

mental salmonid thermal physiology among popula-

tions is conserved, differences between populations in

food availability and quality could produce differ-

ences in population-specific ecological thermal

physiology.

Biotic interactions

Temperature also plays an important role in influenc-

ing biotic interactions (e.g., predation, competition,

disease) of salmonids (Coutant 1973; Ward and

Morton-Starner 2015). Biotic interactions can moder-

ate a salmonid’s fundamental thermal physiology to

produce observed thermal performance (Brett 1971).

Different populations of salmonids confront different

suites of biotic interactions and therefore, may exhibit

different ecological thermal physiologies in response

to different thermal regimes. These indirect, ecolog-

ical drivers of salmonid thermal performance should

be considered when evaluating thermal management

guidelines of at-risk populations.

Competition

Competition may be amplified by the effects of

warming water temperature and negatively affect

salmonids (Bear et al. 2007; Myrvold and Kennedy

2017, 2018). Loss of cold-water habitats will increase

fish density and competition for space in remaining

cold-water refuges. As water temperature increases,

salmonids experience increased metabolic demand

(Fryer and Pilcher 1974), leading to enhanced demand

for prey resources. Taken together, without corre-

sponding increases in prey availability, habitat carry-

ing capacity will decline. Reese and Harvey

(2002) used artificial streams to test competitive

dynamics between Sacramento pikeminnow (Pty-

chocheilus grandis) on the growth and behavior of

juvenile steelhead from the Eel River (CA). Elevated

temperatures (20–23 �C) coupled with competition by

pikeminnow reduced juvenile steelhead growth by

50% (Reese and Harvey 2002). This growth reduction

was not observed when fish were reared at lower water

temperatures (15–18 �C) or without competitors,

indicating a synergistic effect of temperature and

competition stress. Similarly, Reeves et al. (1987)

found that when redside shiner (Richardsonius baltea-

tus) and steelhead trout were reared together at warm

temperatures (19–22 �C), growth rate of steelhead

declined by 54%. However, at cooler temperatures

(12–15 �C) steelhead suffered no loss in production,
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instead redside shiner grew at reduced rates. Wenger

et al. (2011) modeled the impact of future climate

scenarios on four species of western trout and found

that increases in temperature enhanced competitive

interactions and reduced habitat carrying capacity.

Differences in competitor assemblage, and therefore

ecological thermal physiology (Fig. 1), between

watersheds may lead to differential outcomes for

salmonid populations managed under a shared thermal

management paradigm.

Predation

Predation is considered to be a primary cause of

juvenile salmonid mortality both directly and indi-

rectly (Nehlsen et al. 1991; Lindley and Mohr 2003;

Sabal et al. 2016; Erhardt et al. 2018). As ectotherms,

the susceptibility of juvenile salmonids to predation is

sensitive to environmental temperature. In the Cali-

fornia Central Valley, Marine and Cech (2004)

examined the influence of temperature on predation

risk; they reared juvenile Chinook salmon from the

Sacramento River at three temperature regimes

(13–16 �C, 17–20 �C, and 21–24 �C) and exposed

them to striped bass (Morone saxatilis). The authors

found that fish reared at 21–24 �C were preferentially

consumed. Petersen and Kitchell (2001) modeled the

bioenergetics of three predators of juvenile salmonids

(northern pikeminnow, Ptychocheilus oregonensis,

smallmouth bass,Micropterus dolomieu, and walleye,

Stizostedion vitreum) in the Columbia River (WA),

and found that predation by all three increased during

climatic warm periods. This is consistent with labo-

ratory studies by Vigg and Burley (1991) who found

that the rate of prey consumption of northern pike-

minnow was temperature dependent and increased

exponentially across a temperature gradient

(8–21.5 �C). Temperature can also augment sub-lethal

effects of predation. Kuehne et al. (2012) conducted

semi-natural stream experiments observing changes in

direct mortality, behavior and physiological traits of

salmon exposed to predation by smallmouth bass at

15 �C and 20 �C. There were no observed differences

in direct predation, although salmon occupying

warmer water exhibited reduced growth relative to

control treatments without smallmouth bass. Sub-

lethal effects of temperature on predation risk for

salmonids is poorly studied and warrants further

research as such effects may represent a considerable

portion of thermally influenced biotic interactions.

Predator assemblages (i.e., warm-water vs. cold-

water predators) and predation risks also vary among

watersheds with implications for salmonid ecologi-

cal thermal physiologies (Fig. 1). Permutations of

predator assemblage and thermal physiology may

produce different predatory outcomes among salmo-

nid populations experiencing the same temperature.

For instance, the California Central Valley predator

assemblage is highly invaded by non-native species

(e.g., striped bass, black bass [Micropterus spp.],

sunfish [Lepomis spp.]) which may present different,

temperature-dependent, trophic pressures when com-

pared to native or cold-water predator assemblages

found elsewhere (e.g., pikeminnows [Ptychocheilus

spp.], bull trout [Salvelinus confluentus], northern pike

[Esox lucius]). Understanding the role of temperature

in structuring trophic relationships and developing a

mechanistic framework for ecological thermal phys-

iology could improve temperature management guide-

lines that address the influences of temperature on

salmonid predators.

Embracing population variation

Across the Pacific Coast, several factors have con-

tributed to the loss of genetic and environmental

variability among salmonid populations. Homoge-

nization, both genetic and environmental, suggests

that application of current, non-population-specific,

thermal management frameworks may have some

validity. However, the effects of homogenization on

population-specific thermal performance is unknown.

Furthermore, the erosion of the intrinsic diversity of

salmonids is essential to population resilience via the

portfolio effect (Hilborn et al. 2003; Schindler et al.

2010; Greene et al. 2010; Carlson and Satterthwaite

2011). The portfolio effect typically refers to life-

history diversity but can be extended to diversity

among physiological traits or even management

actions (Sturrock et al. 2020). Contained within

different life-history phenotypes are interpopulation

differences in fundamental thermal physiology (Sat-

terthwaite et al. 2017). A diverse portfolio of funda-

mental thermal physiological traits within and

between populations can increase species resiliency

to thermal stress and maintain variation for adaptive
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change. As populations become homogenized, selec-

tion pressures are reduced and locally adapted thermal

traits may be lost. Furthermore, as genetic variation

declines, the overall capacity of a population to

physiologically adapt or acclimate to future environ-

mental conditions becomes impaired (Carlson and

Seamons 2008; McClure et al. 2008). Ongoing

homogenization of genetic diversity and habitat

heterogeneity erodes the portfolio effect and reduces

population resilience to change (Moore et al. 2010;

Carlson and Satterthwaite 2011; Satterthwaite and

Carlson 2015; Dedrick and Baskett 2018).

Hatchery supplementation of wild salmonid stocks

is an observed cause of widespread genetic homoge-

nization in salmonids (Williamson and May 2005).

Hatchery production of juvenile salmon has been

shown to rapidly reduce the fitness of domesticated

strains as well as hybrids in the wild (Araki et al.

2007, 2008) through amplification of hatchery-se-

lected traits and outbreeding depression as these mal-

adapted traits become incorporated into wild popula-

tions (Hindar et al. 1991; Araki et al. 2008; Lusardi

et al. 2015). Williamson and May (2005) documented

genetic homogenization among five hatchery popula-

tions and eight wild populations of Chinook salmon in

California’s Central Valley and concluded that gene

flow between wild and hatchery populations is due to

the long history of hatchery production and out-of-

basin release of juveniles. Similar research conducted

on wild and hatchery populations of Chinook salmon

elsewhere in the Pacific Northwest indicates that

hatchery introgression and subsequent genetic homog-

enization is present but less widespread (Moore et al.

2010; Smith and Engle 2011; Matala et al. 2012; Van

Doornik et al. 2013). Jasper et al. (2013) and

McConnell et al. (2018) studied hatchery straying

among wild and hatchery Alaskan chum salmon (O.

keta) populations. Despite straying, populations main-

tained genetic and trait differences, revealing both

local adaptation and local resistance to introgression

among wild populations. Unfortunately, salmon pop-

ulations in California have been strongly influenced by

hatchery propagation for over a half-century (Sturrock

et al. 2019) which may explain differences in homog-

enization observed between California populations

and more northern populations. Despite improved

understanding of the effect of hatchery fish on wild

fish and the erosion of native genome, few studies have

examined the direct consequences of this on thermal

performance or distinctiveness between populations.

Land use and management may also erode envi-

ronmental heterogeneity, reducing the environmental

selection pressures that historically produced both

genotypic and phenotypic diversity. Dams have elim-

inated access to historical habitat and altered ecolog-

ical processes, river flows and thermal regimes,

homogenizing the evolutionary experience of Chinook

salmon and other anadromous fishes (e.g., Zarri et al.

2019). Numerous salmonid stocks in California can no

longer access historical ranges (Lindley et al. 2006,

Yoshiyama et al. 2011, Moyle et al. 2017), especially

high elevation, cold-water habitats. (McClure et al.

2008). The loss of habitat diversity may increase

homogenization of life-history strategies crucial to the

portfolio effect. Finally, habitat loss reduces landscape

carrying capacity and imposes greater sympatry

amongst populations and seasonal runs, increasing

risks of genetic introgression (Waples 1991; McClure

et al. 2008).

Applying a uniform suite of temperature thresholds

across populations, some of which are homogenized

and others diverse, poses the same issues of mismatch

caused by applying general thermal guidance to

multiple unique populations. Successful management

of salmon in a rapidly changing environment must

embrace a portfolio of genetic and phenotypic diver-

sity (Moore et al. 2010; Carlson and Satterthwaite

2011; Anderson et al. 2015; Moyle et al. 2017;

Dedrick and Baskett 2018). Ultimately, maintaining

remaining diversity (environmental or genetic) is

fundamental to a population’s adaptive capacity and

resilience to global change. Population-specific tem-

perature guidelines of salmonids could protect remain-

ing diversity in thermal performance traits that offer

resilience against future global change.

Rethinking thermal management

To combat the effects of warming river temperatures

associated with anthropogenic and environmental

change, management agencies have established ther-

mal criteria intended to constrain river warming and

protect salmonid populations throughout the Pacific

Northwest. These temperature criteria allow for rapid

determination of thermal risks to fish and can trigger

release of cold-water reserves from reservoirs. The

largest of these management frameworks is the Region
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10 Guidance (U.S. Environmental Protection Agency

2003) implemented throughout the Pacific Northwest

and considered for application to California. The

Region 10 document was heavily researched, com-

bining thermal performance data (e.g., mortality and

growth) across populations and species to provide

temperature thresholds for the protection of native

salmonids (Table 1). The Region 10 temperature

guidelines appear to be broadly protective of Califor-

nia salmon. However, these thresholds do not account

for interpopulation variation or the observable diver-

sity in thermal physiology and ecological parameters

known to influence population thermal performance.

Furthermore, these criteria use a rolling seven-day

average of daily maximums (7DADM) as a metric for

river temperature. While intuitive and easily calcu-

lated, the 7DADMmetric captures neither the absolute

maximum nor the duration of exposure, crucial aspects

to a fish’s thermal experience. Successful salmonid

conservation requires protecting inherent thermal

diversity among populations. While broad manage-

ment regulations (e.g., Region 10 Guidelines) may

serve as a starting point or backstop, conserving

diversity requires population-specific management

strategies. Population-specific thermal regulations

may be considered overly burdensome to common

regulatory frameworks; however, managing at the

population level amplifies diversity and leverages the

portfolio effect to protect species regionally. Manag-

ing to conserve diverse thermal physiologies will

increase the resilience of populations and their ability

to withstand stochastic events and adapt to environ-

mental change.

Accounting for thermal eco-physiology

in salmonids

California contains the southern range boundary for

several native migratory salmonid species, including

endemic and critically endangered populations

(Moyle et al. 2017). In the future, these populations

will confront increasingly severe and frequent drought

conditions (Diffenbaugh et al. 2015). For instance, the

recent prolonged and severe California drought

(2012–2016) led to the collapse of Sacramento River

winter-run Chinook salmon population. This popula-

tion is reliant upon cold-water releases from Shasta

Dam in the Sacramento River (ICF International et al.

2016). Despite having population-specific thermal

criteria (13.3 �C 7DADM for rearing embryos,

USFWS 1999) the extended drought conditions

exhausted the cold-water pool in Shasta Reservoir

and water temperatures exceeded 15.5 �C, leading to

extremely low embryo and larval survival (Moyle

et al. 2017; Durand et al. 2020). Continued persistence

of this population is aided by a conservation hatchery

and reintroductions into Battle Creek in Northern

California (ICF International et al. 2016).

As addressed above, salmonid populations vary in

their ecological thermal physiology, dependent upon

how their fundamental thermal physiology interacts

with ecological factors. A population’s specific com-

bination of factors, (e.g., prey-availability, acclima-

tion capacity, life-history strategy) can aid

management in defining critical thermal thresholds

(e.g., upper physiological limits) to prevent mortality

as well as optimal temperature targets (e.g., fastest

growth, smoltification success, maximum juvenile

recruitment) to improve population performance.

Quantifying population-specific, ecologically linked

thermal criteria is necessary to manage at-risk

salmonids under warming climatic conditions, where

meeting rigid temperature thresholds in California’s

Mediterranean climate and highly-modified hydro-

scape will become increasingly difficult. More

broadly, this approach can be used to assess and

identify vulnerable populations throughout the Pacific

Northwest.

We pose a series of research questions to improve

assessment of population-specific thermal vulnerabil-

ity and to offer insights actionable for management.

1. Do the seasonal runs of Chinook salmon exhibit

differences in thermal physiology and

performance?

2. Do temperature tolerances or acclimation capac-

ities differ between wild and hatchery salmonid

populations?

3. How does temperature influence smoltification

success; does the relationship vary between pop-

ulations or seasonal runs?

4. How does energetic state (e.g., satiated vs.

starved) influence a fish’s thermal performance?

5. How does temperature influence salmonid prey

and predator species and their effects on juvenile

salmon populations?
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6. How do interspecific and intraspecific competition

influence thermal physiology?

Optimizing the thermal landscape requires data

addressing both ecological and physiological traits of

different populations. We outline a research frame-

work to assess ecological factors pertinent to fish

thermal performance and to develop population-

specific datasets for California salmonids (Fig. 2).

We recommend two tiers of data collection. First, a

comprehensive collection of a few, rapidly sampled

environmental characteristics meant to identify pop-

ulations with declining environmental or ecological

conditions (e.g., lack of thermal refugia, poor water

quality, limited rearing habitat). For instance, popu-

lations with limited thermal refugia may have greater

difficulty responding to environmental warming.

Understanding these environmental characteristics

would allow for identification of at-risk populations

for which more thorough thermal assessments are

warranted. Once at-risk populations are identified, a

second tier of data collection should focus on impor-

tant physiological and ecological parameters neces-

sary to determine both fundamental and ecological

thermal physiologies of different populations. Defin-

ing these physiologies will provide managers with

metrics useful for establishing thermal thresholds

[e.g., growth rates (Marine and Cech 2004; Lugert

et al. 2016), critical thermal maximums (Becker and

Genoway 1979), temperature dependent metabolism

(Farrell et al. 2008; Clark et al. 2013)]. Defining

fundamental and ecological thermal physiology of at-

risk populations will also help identify strategies for

improving population robustness and resiliency (e.g.,

predator removal, reduced hatchery supplementation,

genetic rescue).

We recommend prioritizing research on early

migrating populations (e.g., Sacramento River win-

ter-run, Columbia River and Klamath Basin spring-

run populations) or populations that exhibit an over-

summering component to their freshwater life history

(e.g., coho salmon) because many are at risk of

extinction within 50 years (Moyle et al. 2017). Indeed,

many of these populations are already listed as

federally threatened or endangered. Furthermore,

Chinook populations arising from the San Joaquin

River watershed and steelhead trout from southern

California coastal streams warrant prioritization

because they represent the southernmost populations

of their species. Understanding the effect of hatchery

supplementation and genetic homogenization on pop-

ulations which support commercial fisheries will be

important in predicting the response of these econom-

ically and culturally valuable resources.

Conclusion

Pacific salmonids are a collection of wide-spread and

differing populations. Across their ranges, diverse

environmental factors have produced variation in both

their fundamental and ecological thermal physiolo-

gies. Understanding how variation in thermal physi-

ology yields population-specific thermal performance

of populations is crucial from a management perspec-

tive. For each population, thermal performance is

challenged by rapidly changing environmental condi-

tions. The inherent complexity of interactions between

changing ecosystems and organismal thermal physi-

ology challenges the application of broad thermal

management criteria. Simple static temperature crite-

ria can be improved by incorporating local data on

salmonid fundamental physiology and on ecological

conditions to produce population-specific thermal

management strategies.
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